9,412 research outputs found

    Ontology modelling methodology for temporal and interdependent applications

    Get PDF
    The increasing adoption of Semantic Web technology by several classes of applications in recent years, has made ontology engineering a crucial part of application development. Nowadays, the abundant accessibility of interdependent information from multiple resources and representing various fields such as health, transport, and banking etc., further evidence the growing need for utilising ontology for the development of Web applications. While there have been several advances in the adoption of the ontology for application development, less emphasis is being made on the modelling methodologies for representing modern-day application that are characterised by the temporal nature of the data they process, which is captured from multiple sources. Taking into account the benefits of a methodology in the system development, we propose a novel methodology for modelling ontologies representing Context-Aware Temporal and Interdependent Systems (CATIS). CATIS is an ontology development methodology for modelling temporal interdependent applications in order to achieve the desired results when modelling sophisticated applications with temporal and inter dependent attributes to suit today's application requirements

    Utilising semantic technologies for decision support in dementia care

    Get PDF
    The main objective of this work is to discuss our experience in utilising semantic technologies for building decision support in Dementia care systems that are based on the non-intrusive on the non-intrusive monitoring of the patient’s behaviour. Our approach adopts context-aware modelling of the patient’s condition to facilitate the analysis of the patient’s behaviour within the inhabited environment (movement and room occupancy patterns, use of equipment, etc.) with reference to the semantic knowledge about the patient’s condition (history of present of illness, dependable behaviour patterns, etc.). The reported work especially focuses on the critical role of the semantic reasoning engine in inferring medical advice, and by means of practical experimentation and critical analysis suggests important findings related to the methodology of deploying the appropriate semantic rules systems, and the dynamics of the efficient utilisation of complex event processing technology in order to the meet the requirements of decision support for remote healthcare systems

    Information systems evaluation methodologies

    Get PDF
    Due to the prevalent use of Information Systems (IS) in modern organisations nowadays, evaluation research in this field is becoming more and more important. In light of this, a set of rigorous methodologies were developed and used by IS researchers and practitioners to evaluate the increasingly complex IS implementation used. Moreover, different types of IS and different focusing perspectives of the evaluation require the selection and use of different evaluation approaches and methodologies. This paper aims to identify, explore, investigate and discuss the various key methodologies that can be used in IS evaluation from different perspectives, namely in nature (e.g. summative vs. formative evaluation) and in strategy (e.g. goal-based, goal-free and criteria-based evaluation). The paper concludes that evaluation methodologies should be selected depending on the nature of the IS and the specific goals and objectives of the evaluation. Nonetheless, it is also proposed that formative criteria-based evaluation and summative criteria-based evaluation are currently among the most and more widely used in IS research. The authors suggest that the combines used of one or more of these approaches can be applied at different stages of the IS life cycle in order to generate more rigorous and reliable evaluation outcomes

    Evaluating Built-in ECC of FPGA on-chip Memories for the Mitigation of Undervolting Faults

    Get PDF
    Voltage underscaling below the nominal level is an effective solution for improving energy efficiency in digital circuits, e.g., Field Programmable Gate Arrays (FPGAs). However, further undervolting below a safe voltage level and without accompanying frequency scaling leads to timing related faults, potentially undermining the energy savings. Through experimental voltage underscaling studies on commercial FPGAs, we observed that the rate of these faults exponentially increases for on-chip memories, or Block RAMs (BRAMs). To mitigate these faults, we evaluated the efficiency of the built-in Error-Correction Code (ECC) and observed that more than 90% of the faults are correctable and further 7% are detectable (but not correctable). This efficiency is the result of the single-bit type of these faults, which are then effectively covered by the Single-Error Correction and Double-Error Detection (SECDED) design of the built-in ECC. Finally, motivated by the above experimental observations, we evaluated an FPGA-based Neural Network (NN) accelerator under low-voltage operations, while built-in ECC is leveraged to mitigate undervolting faults and thus, prevent NN significant accuracy loss. In consequence, we achieve 40% of the BRAM power saving through undervolting below the minimum safe voltage level, with a negligible NN accuracy loss, thanks to the substantial fault coverage by the built-in ECC.Comment: 6 pages, 2 figure

    Indoor mould growth prediction using coupled computational fluid dynamics and mould growth model

    Get PDF
    This study investigates, using in-situ and numerical simulation experiments, airflow and hygrothermal distribution in a mechanically ventilated academic research facility with known cases of microbial proliferations. Microclimate parameters were obtained from in-situ experiments and used as boundary conditions and validation of the numerical experiments with a commercial computational fluid dynamics (CFD) analysis tool using the standard k–ε model. Good agreements were obtained with less than 10% deviations between the measured and simulated results. Subsequent upon successful validation, the model was used to investigate hygrothermal and airflow profile within the shelves holding stored components in the facility. The predicted in-shelf hygrothermal profile was superimposed on mould growth limiting curve earlier documented in the literature. Results revealed the growth of xerophilic species in most parts of the shelves. The mould growth prediction was found in correlation with the microbial investigation in the case-studied room reported by the authors elsewhere. Satisfactory prediction of mould growth in the room successfully proved that the CFD simulation can be used to investigate the conditions that lead to microbial growth in the indoor environment

    Semantic-based decision support for remote care of dementia patients

    Get PDF
    This paper investigates the challenges in developing a semantic-based Dementia Care Decision Support System based on the non-intrusive monitoring of the patient's behaviour. Semantic-based approaches are well suited for modelling context-aware scenarios similar to Dementia care systems, where the patient's dynamic behaviour observations (occupants movement, equipment use) need to be analysed against the semantic knowledge about the patient's condition (illness history, medical advice, known symptoms) in an integrated knowledgebase. However, our research findings establish that the ability of semantic technologies to reason upon the complex interrelated events emanating from the behaviour monitoring sensors to infer knowledge assisting medical advice represents a major challenge. We attempt to address this problem by introducing a new approach that relies on propositional calculus modelling to segregate complex events that are amenable for semantic reasoning from events that require pre-processing outside the semantic engine before they can be reasoned upon. The event pre-processing activity also controls the timing of triggering the reasoning process in order to further improve the efficiency of the inference process. Using regression analysis, we evaluate the response-time as the number of monitored patients increases and conclude that the incurred overhead on the response time of the prototype decision support systems remains tolerable

    The fission yeast FANCM ortholog directs non-crossover recombination during meiosis

    Get PDF
    Peer reviewedPostprin
    • …
    corecore